Matching and Predicting Street Level Images

نویسندگان

  • Biliana Kaneva
  • Josef Sivic
  • Antonio Torralba
  • Shai Avidan
  • William T. Freeman
چکیده

The paradigm of matching images to a very large dataset has been used for numerous vision tasks and is a powerful one. If the image dataset is large enough, one can expect to find good matches of almost any image to the database, allowing label transfer [3, 15], and image editing or enhancement [6, 11]. Users of this approach will want to know how many images are required, and what features to use for finding semantic relevant matches. Furthermore, for navigation tasks or to exploit context, users will want to know the predictive quality of the dataset: can we predict the image that would be seen under changes in camera position? We address these questions in detail for one category of images: street level views. We have a dataset of images taken from an enumeration of positions and viewpoints within Pittsburgh. We evaluate how well we can match those images, using images from non-Pittsburgh cities, and how well we can predict the images that would be seen under changes in camera position. We compare performance for these tasks for eight different feature sets, finding a feature set that outperforms the others (HOG). A combination of all the features performs better in the prediction task than any individual feature. We used Amazon Mechanical Turk workers to rank the matches and predictions of different algorithm conditions by comparing each one to the selection of a random image. This approach can evaluate the efficacy of different feature sets and parameter settings for the matching paradigm with other image categories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localizing and Orienting Street Views Using Overhead Imagery

In this paper we aim to determine the location and orientation of a ground-level query image by matching to a reference database of overhead (e.g. satellite) images. For this task we collect a new dataset with one million pairs of street view and overhead images sampled from eleven U.S. cities. We explore several deep CNN architectures for crossdomain matching – Classification, Hybrid, Siamese,...

متن کامل

Geo-localization of Points and Regions in Images by Pixel level 3D Position Estimation

In this paper, we present a new framework for geo-locating an image utilizing a novel multiple nearest neighbor featurematching method using Generalized Minimum Clique Graphs (GMCP). First, we extract local features (e.g. SIFT) from the queryimage and retrieve a number of nearest neighbors for each query feature from the reference dataset. Next, we apply our GMCP-based feature match...

متن کامل

طراحی و توسعه یک روش تلفیقی تناظریابی ناحیه ای و عارضه مبنای جدید برای توجیه نسبی در فتوگرامتری برد کوتاه

By far, many stereo-matching techniques have been successfully proposed and applied in digital aerial photogrammetry. However, due to some problems such as large parallaxes, occlusions, geometric deformations, and repetitive patterns in convergent close range images, these methods may not be applicable to the same level of success as that of aerial imagery. In order to overcome these shortcomin...

متن کامل

Measurement of Left Ventricular Myocardium Wall Instantaneous Motions with Echocardiographic Sequence Images

Background & Aims: One of the important aims of quantitative cardiac image processing is the clarification of myocardial motions in order to derive biomechanical behavior of the heart in the disease condition. In this study we presented a computerized analysis method for detecting the instantaneous myocardial changes by using 2D echocardiography images. Methods: The analysis was performed on th...

متن کامل

Color scene transform between images using Rosenfeld-Kak histogram matching method

In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010